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Abstract

We consider a class of singular Sturm-Liouville problems with a nonlinear convection and a
strongly coupling source. Our investigation is motivated by, and then applied to, the study of
transonic gas flow through a nozzle. We ar interested in such solution properties as the exact number
of solutions, the location and shape of boundary and interior layers, and nonlinear stability and
instability of solutions when regarded as stationary solutions of the corresponding convective
reaction-diffusion equations. Novel elements in our theory include a priori estimate for qualitative
behavior of general solutions, a new class of boundary layers for expansion waves, and a local
uniqueness analysis for transonic solutions with interior and boundary layers.

1. Introduction

Consider the nonlinear Sturm-Liouville problem

eu" = f(x, u)' - c(x)h(u)

with u prescribed at x = 0 and x = 1. We study properties of the solutions: their
number, their asymptotic shape for small e, and their stability and instability,
when viewed as stationary solutions of the corresponding time evolution equa-
tion. Our study is motivated by, and then applied to, the problem of transonic
gas flow through a nozzle. Novel elements in our theory include a new class of
boundary layers corresponding to expansion waves, a priori estimate for qualita-
tive behavior of general solutions, and a local uniqueness analysis for transonic
solutions with interior and boundary layers.

For simplicity of presentation, we shall carry out our analysis for the model
problem

(1.1) eu" f(u)' - c(x)h(u), u = u(x) r R'. 0 x 1 1,

(1.2) u(0) u, u(1) = u'.
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The flux function f(u) is assumed to be convex. This is motivated by gas
dynamics, where the sound speed depends monotonically on the density. By
composition with a simple translation, we may assume that

f"(u) >0 for all u under consideration,
(1.3)

b f0) = f'(0) = 0.

The function h(u) represents the coupling of the source due to the geometry and
the gas flow. The. following strong nonlinear coupling assumption is dictated by
physics:-

(1.4) h (u) 0 0. h'( u) 0 0 for all u under consideration.

The function c( x) represents the strength of the source and may change sign. For
simplicity aind definiteness, we make the following assumption:

(1.5) c(x-)h(u) <0 for 0 <x.< 1 and all u under consideration.

%lore general situations can also be treated with our analysis. There are two
distinct cases:

(1.6) c( x )h'( u ) < 0 (stable case: diverging duct).

1 7) c(. -)h'( u ) > 0 (unstable case: converging duct).

Our equation (1.1) may be regarded as the stationary equation for the
convective reaction-diffusion equation

(l.8) u, + f(u), = Fu,, + c(x)h(u).

In the stable case, (1.1 )- 1.2) has a unique solution which is time asymptotically
stable with respect to (1.). In the unstable case. there may exist three solutions.
one of which has an interior layer and is nonlinearly unstable with respect to
1.8): the other t"wo are stable.

We now relate our problem to nozzle flow. The quasi-one-dimensional model
for isentropic viscous compressible flow through a nozzle is

(1.911 (pA), + (prA), = 0.

(I .9), (pcA), 4 (pv 2A), + Ap, [( Av,)

where p, r, p, I and A = A(x) are the density, velocity, pressure, viscosity
coetlicient of the gas and the cross section of the nozzle. The pressure is a given
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function of the density p. We assume that

(1.10) p'(p) > 0, p"(p) > 0.

This is satisfied by the polytropic gases where p(p) = ap'. 5 > r > 1. The station-
ary equations are

(pvA), = 0.

(pt'A), + Ap = [,(Av,)_..

The first equation can be integrated to yield a relation between v and p. This can
be used to eliminate one of the dependent variables and so yield a scalar equation
for one dependent variable. If p is eliminated, we get

(1.11) (g(,, x)), = At,, + c(x)k(,),

A uAv +p A'(x)
(I.12) g(c. x) - A(x) t,A(x) A ( xV "

(x A'(.) A(_v)

A (x (.4(x)
(1.12). c(.\) =- (A ( x) 2 pou0A0 - ____,_

(1.121, k(v) = v,

where p - p(O). r,, = r(0) and A, = A(0). From (1.10) we have

p,,.4,.4(.") por',,A,, p ,A)+ 4'(x) )

. 1(V) 1) ,A(x) p  iA(x) tL A(x)

g,,( ) A ( x)A\ (x)p' + () 174 vA 1A0

The first equation shows that. for small viscosity /t. g, > 0 if the 11oh is
supersonic (i.e.. when jvl > ( p')'.), while g, < 0 if the flow is subsonic (i.e..
when Irl < ( p')' 2). We are interested in transonic flow. i.e.. when ji j is close to
the sonic speed ( p,)", 2. Thus we assume that Ivi * 0. and so k(,) * 0. We see
that the nozzle equation (1.11) shares properties analogous to (1.3). (1.4) for the
model (1.1). For this reason, we will call the positive (negative) states u > 0 []
(u < 0) for (1.1) supersonic (subsonic) and call the zero state sonic. It is clear C[
from the ib'v equations that for a converging duct. i.e.. A'(x) < 0, we have n.

'( x)k'( ) > 0. This is the reason we called the unstable case (1.7) the converging
duct and the stable case (1.6) the diverging duct.

Dist riblution/

Availability Codes

Avail and/or
Diat Special

"' mmmmmm m mmml mmm L



34 S.-B. HSU AND T.-P. LIU

Our main interest is in the properties of solutions for small e. The inviscid
theory, - = 0+, has been worked out by Liu in [4]. This is reviewed in Section 2.
We also remark that a new type of boundary layer with algebraic decay exists.
They correspond to rarefaction waves connecting to the sonic state, Remark 2.1.
In Section 3 we present an analysis which shows that any general solution of
(1.1), (1.2) is close to one of the corresponding inviscid solutions. Our analysis
differs markedly from the usual asymptotic analysis where solutions of viscous
equations are constructed based on the inviscid solutions. In the stable case (1.6),
it follows easily from the maximum principle that there exists at most one
solution. The inviscid theory predicts that in the unstable case there are one or
three solutions, depending on the data (1.2). With the a priori qualitative
understanding obtained in Section 3, we show in Section 4 that (1.1), (1.2) with
(1.7) has exactly one or three solutions by proving a local uniqueness theorem.
For solutions with no interior layer, this is done by generalizing and iefining the
classical argument of Coddington and Levinson [2]. For solutions with interior
layer, a new argument is introduced for the local uniqueness theorem.

In Section 5 we present a stability analysis for solutions of (1.1) viewed as
stationary solutions of (1.8).

There have been studies on singular nonlinear Sturm-Liouville problems: see
[3] and references therein. However, these studies do not consider models with
the strong coupling property (1.4). As we show here, this coupling property has
the regularizing effect that viscous solutions are close to the inviscid solution.
In the absence of (1.4), the inviscid theory often offers too many solutions, most
of which do not correspond to viscous solutions. With (1.4) there arise new
analytical difficulties, some of which are resolved here. It would be interesting to
study more general convective reaction-diffusion equations such as the full
quasi-one-dimensional nozzle flow equations (cf. references in [41).

2. Inviscid Theory

In this section we review the time-asymptotic states for

(2.1) u, + f(u), = c(x)h(u).

We then present a brief account of that theory. Except for boundary or interior
layers, the solutions of (1.1) should satisfy

(2.2) f(u), = c(x)h(u)

as E - 0 .. Interior layers would tend to stationary shock waves (u , u +) of (2.1)
satisfying the jump condition and entropy condition

(2.3) f(u+) =f(u). u< u

An inviscid boundary layer (u, u,) at x = 0 would correspond to stationary
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waves of (1.1) at x = 0 which in turn satisfy approximately

f(U)= . eu., u(0) = u, U(0) - Uo. u(o) = 0,

since in the layer the source c(x)h(u) has little effect. Integrate the above
equation from x = x to x = oc to get

(2.4)(o ru(x) = f(u(x)) -f(Uo), u(0) = u1, u(o0) = uo .

In order for the above equation to have a solution, we need

(2.4) (u - u)(f(u) -f(uo)) < 0 forall u between u, and u.

Thus an inviscid boundary layer (u,, u0 ) of (2.1) at x = 0 would correspond to a
limit of viscous boundary layers of (1.1) if and on)y if (2.4) holds. Similarly, a
boundary layer (uo, u,) at x = I satisfies

(2.5)() Eu,(x) = f(u(x)) - f(u 0 ), u(1) = u,. u( - oc) = u,).

(2.5) (u - u,)(f(u) -f(u,)) >0 for all u between u0 and u,.

Conditions (2.4) and (2.5) can be related directly to elementary waves for

(2.6) u, + f(u), = 0.

There are two types of waves for (2.6). Two states u and u. can be connected
bv a shock wave(u . u ) with speed

f(u,)-f(u )

if u. < u . When u,> u - (u u,) is a rarefa-tion wave propagating with
characteristic speed f'(u). This is so under the convexity condition f"(1u) > 0.
(1.3). It can be seen easily that (2.4) holds if and only if (u, u,) constitutes an
elementary wave for (2.6) with negative speed. Similarly. (2.5) holds if and only if
(u , u,) has positive speed.

Remark 2.1. Formal asymptotic expansion for boundary layers at x = 1 can
he performed to yield (2.5),) as follows: Write

u(x) = U(x) + e('),

l -x
X17)
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where U( ) is valid outside the layer and therefore is close to being an inviscid
solution satisfying (2.2), and (TI) is valid it, the layer. Plug the expression into
(1.1) and compare the coefficients of to obtain

I," + 1"() ,)' = 0,

1-(0) = 11.r , O{ I "( ) =c O.

Integ-a te aboe to yield (2.5),.

1" = -PO+', I, 10) = , 0(c .

From this we notice that in the case of a rarejacthon boundary layer, ur > 0. 1 71)
decays alehruica/lv as a consequence of (1.3). When f(u) has higher-order zeros
at u = 0. the decay rate is lower. This is in contrast to the usual types of
boundary layers, where the decay is exponential.

The above can be summarized as follows: Solutions of (1.1). (1.2) would tend
to inviscid solutions which satisfy (2.2) except for possible discontinuities. The
discontinuities at 0 < x < I, x = 0 and x 1. would satisfy (2.3). (2.4) and
(2.5). rcspcctivel . Such an inviscid wave pattern is called an asymptotic state
because it represents the large-time state of solutions with given end states at
x ± x (see Liu 141). We now describe all the possible types of asymptotic
states with given end states u, and u,.

Besides hypothesese (1.3) and (1.5) we further assume that

h(u)
(2.7) lil l 0.

Since ( )h( u) 0 6. (1.5), a solution u(x) of (2.2) moves toward the sonic state
zero as x increases. Condition (2.7) ensures that given a state u there always
exists a state i such that i and u are connected by a solution of (2.2) with values
t at =0 and u at x = 1. Since (2.2) is singular at u =0. and f'(0) = 0 by
(1.3), there are two states u* and u, with u* > 0 > u.. each of which is
connected to u = 0 by solutions of (2.2). Given a state u * 0. define i. itu < 0.
satisfying

(u) =/(i4)

so that u and u form a standing shock wave, (2.3).
Consider first the stable case (1.6), c(x)h'(u) < 0. It is easily shown that in

this case

(2.8) u* > .
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Case A. u< U,.

Case Al. When u, > 0. the asymptotic state consists of a backward wave
(U, u.) at x = 0, a subsonic stationary wave connecting u* at x = 0 and u = 0
at x = 1, and a forward rarefaction wave (0, u,) at x = 1. The backward wave
(u 1 u.) is a shock (rarefaction) wave when u, > u* (ut < u*).

Case A2. When i, < 0. the asymptotic state consists of a backward wave
(u,. i,) and a stationary wave (i,. U,).

Case B. I* < ul < u*.

Case B. When u, > 0. the asymptotic state consists of a supersonic station-
ars wave ( ul, a ) for 0 < x < x. a stationar, shock wave (u . u ) at x = x,, a
subsonic stationar, wave ( tu .0) for .-0 < x < I and a supersonic rarefaction
wave (0. i,) at x = 1. The location x = x, and the states u . u . of the standing
shock wave are determined uniquely by the left state u,.

Case B2. When u, < I and i, < if,. the as'mptotic state consists of a
backward shock wave (u,,. a,) and a subsonic stationary wave (5,. ia).

Case B3. When a, - 0 and i, __ ii. the asymptotic state consists of a
supersonic stationar, w.ave (i,. i ) for 0 < x < x,, a standing shock wave
(u . i. ) at v = t, and a subsonic stationary wave (u u) for .V1 < V < 1.

('ase C. u > u*. Define u, with a, - u,.

Case Cl. When u, > ii. the asymptotic state consists of a stationary", wave
(u,. it ) and a forward wave (u, u,) at x = 1.

Case C2. When "r < K1 < 0 and r, i i,, the asymptotic state consists of a
stationary wave for x * x0 and a stationary shock wave at x = ,.

Case C3. When u, < ul < 0 and r < i, the asymptotic state consists of a
backward shock wave (u,, ,) at x = 0 and a stationary wave ( i,. u).

Next we consider the unstable case (1.7), c(x)h'(u) > 0. In this case we have

(2.9) ii. > u* > 0.

(ase D. u, < u*.

Case DI. When u, > 0, the asymptotic state consists of a backward wave
(u,. u,) at x = 0, a subsonic stationary wave (u.,0) for 0 < x < 1, and a forward
rarefaction wave (0, u,) at x = 1.
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Case D2. When u, < 0, the asymptotic state consists of a backward wave
(u, i,) at x = 0 and a subsonic stationary wave (ii,, u,) for 0 <x _ 1.

Case E. u* < u,. Define u1 by hi- u1.

Case El. When u, > 0 and u* < u, < i,, there are three asymptotic states:

(i) a supersonic stationary wave (u(, u,) for 0 < x < I and a forward wave
(u l , u ) at x= 1;

(ii) a supersonic stationary wave (u,, u-) for 0 < x < x , a stationary
shock wave (u_, u,) at x = x 0, a subsonic stationary wave (u+,0) for
x o < x < I and a forward rarefaction wave (0, u,) at x = 1: x., u, u,
are uniquely determined by u,;

(iii) a backward shock wave (u,, u.) at x = 0, a subsonic stationary wave
(u., 0) for 0 < x < 1. and a forward rarefaction wave (0, u,) at x = 1.

Case E2. When u, > 0 and u, > i,, the asymptotic state consists of a
stationary wave (u ,, u,) for 0 < x < I and a forward wave (ul, u,) at x = 1.

Case E3. When u, < 0, there are three subcases: (i) if fi < u, < 0, then
an asymptotic state consists of a stationary wave (u,, ul) and a forward shock
wave: (ii) if it f,. then it consists of a backward shock wave (u,, i,) and a
stationary wave (ar, u,); (iii) if ii < u, < 0 and 5, > a,, then there also
exists an asymptotic state which consists of transonic stationary waves with a
stationary shock wave at x = x0, determined uniquely by u, and u,.

Thus, given end states ut and u,, the inviscid theory yields three solutions
for Case El and also (iii) of Case E3. It can be shown easily that the above is
a complete description of asymptotic states and that an asymptotic state
depends smoothly on its end states.

3. A Priori Properties

As in Section 2, hereafter besides (1.3)-(1.5) we also assume that

(3.1) tim h(u) = 0.luI-o f(u)

LEMMA 3.1. Any solution u(x) of (1.1) belongs to one of the following three
types:

Type I: u(x) is strictly increasing;
Type II: u(x) is strictly decreasing;
Type Ill: u( x) has a unique critical point which is an absolute minimum.

Proof: This is an immediate consequence of the hypothesis (1.5),
c(x)h(u) < 0.
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LEMMA 3.2. There exists a positive constant M depending on u, and ur and not
on e such that anY solution of u(x) = u(x; E) of (1.1), (1.2) satisfies

Iu(x) I < M, 0 _ x < I.

Proof: The lemma holds trivially for monotone solutions. Let u(x) be a
Type Ill solution of Lemma 3.1 with minimum u(xo) at x = x. Integrate (1.1)
from x = x, to x = 1, and use (1.5), ch < 0, to obtain

eu'(1) + f (u(x))) = f(u') - f'c(x)h(u(x)) dx

(3.2)

=f(uj + f'c(x)huxudx.

Since h'(u) * 0 and u(x) is strictly increasing for x, < x < 1, h(u(x)) is
monotone for x, < x < 1. When

max h(u(x)) = h(u(1)) = h(u,),
o X 61

we have from (3.2) and u'(1) > 0 that

f(u(xo)) < f(ur) + h(u,) 1 c(x) dx
Nl.o

which is bounded independent of E and so the lemma is proved. When

max h(u(x)) = h(u(xo) ) ,
Xo<X=

we have again from (3.2) that

fn(x 0 )) < u('r) + h(u(xo))f x x

This estimate and hypothesis (3.1) yield an upper bound independent of e for
Iu(xo)I and therefore for Iu(x)I, 0 < x < 1.

LEMMA 3.3. Suppose that u(x), a < x < b, is a strictly increasing (decreas-
ing) solution of (1.1), (1.2) and that u(x) > -CI" 4 (u(x) < CE'/ 4), a < x < b,
for some C > 0. Then b - a = O(1)E 1/ 2 as E -- 0+.
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Proof: We consider only the case when u(x) is increasing, the other case is
similar. Integrate (1.1) from a to x to obtain

eu'(x) -- tu'( a) = f( u(x ))- f(u( a)) - fc( y)h( u(y)) dv.

/4

Since u is increasing, u(x) > u(a) for x > a, and u(a) > - Ce' 4, we have from
(1.3) that (u(x)) - f(u(a)) -I C 2ef'2. Thus the above yields

u'(x) 2 ( c()h(iu(y)) di for a < x < b.

Integrate this from a to b to yield

Eu( b) - -u(a) > - I(C(b - a )E1 /2 - c(.v)h(u( )) dv dx.

By assumption, c(x)h(u) < 0, and from Lemma 3.2. Jul < M. Thus, the above
estimate yields

2uM E A-CY 2(h - a) > D(h - a)'.

for some positive constant D. The lemma fallows immediately from this
inequalit'.

In the following two lemmas we study the solution of (1.1 1. (1.2) outside the
layers. In all cases we assume that x, - xO is of order one. i.e .x - .x,,> &
for sufficiently large C. and 0 < -, < x, < 1.

LIsMM,A 3.4. Let u( x) he a solution of (1.1). (1.2). Set

C, 3( maxf"(u))( max c(x)h(u)l,

() ( f'( u(x))u'(x) - dx)h(u(V)).

(i) Suppose that u'(x) > 0, f'(u(x)) < - r 1 4 for k,, < x < ,i aid

q (-.,) < (CE '. Then ( v ) C ' x X X .,. for r sufficient/v small.

(ii) Suppose that u'(x) < 0. f'(u(.x)) > 11 4 for xO < x <.Il and (I <

(.'t. 4. Then joP(-x) I< (ei
4  1, x ) : .5 v ., for e sufficienth small.

Proof: We shall prove (i): (ii) follows by similar arguments. Suppose that
the conclusion fails. Then there exists Z. x, < . < x, such that

l(x) C< d, t'' for x,) < x <
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and either

(i) (.) = C'e' 4 , '(£) 0,

or

(o) . - l
t i  

_-v ) : 0

We treat (I1): (11) is similar. Relation (1.1) is the same as eu"(x) = P(x). With (I)

we have

u"(-V) = CIE ,/4.
'1

.f'( ,))u'(iV) + I'(u(3?)(u'(,i))

-C(V h(u(x)) - (_)h'(u(.))u'(.) > 0.

From the hypothesis f'(u) - 4 the above yields

(-+.~ ~ ji , /( ))( J'(-V)
(3.3)

On the other hand. from (1) we have

and b\ Lemma 3.2. Jul < At. Since, by hypothesis, 01(u) < e'1. , it follows that

1"(" max i<(x)h(u)l + ('/ 4)r F .

This and (3.31 -eld

max ( max) F

4 In I )

I ('1 
"  t~ --_2 maxf c'xlu) a < .x h , l + .+ -

+ max (".x)h(u) max I x)h(uF 1 +
i 11 - 

X -

.,+, +<(1141 :: t  f C )

This contradicts the definition of C, when r is sufliciently small.
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PROPOSITION 3.5. Suppose that u(x) is a solution of (1.1), (1.2) and is strictly

monotone over a subinterval (x,, x,) of (0, 1). Then there exist C > 0 and a

subinterval (x 2 , X3) of (x,, x,) such that. for sufficientlv small e.

S(x)l -= f'(u(x))u'(x) - c(x)h(u(x)) < Cel/ 4 over (x 2 , x3) and

IX - xOI + X3 X- x<j : De318

for some positive constant D independent of e.

Proof: In view of Lemmas 3.3 and 3.4, we only need to show that, for

strictly increasing u(x). there exists x, with IT (x) < CE"/ 4 and Ix2  x! =

O(1 )e3 'S and, for strictly decreasing u(x), there exists x 3 with IT (x,) I CEO>"

and x, - xj = O(l)e 3 '  for any given C > 0. Consider the case u(x) is increas-

ing. Suppose that I(x)T > Ce"' 4, x < x < -. for some x > v) and C > 0.

There are two cases:

(_) qx)> CE, 4  for x 0 < x <_x,

or

(II) ,(.x) < -Ctl 4  for x 0 <x <x.

In Case (I) we have from (1.1), Fu"(x) = x). that u"(x) > Cr 3 4 for x, < x

< . and so by integration

u~x) ! 0~ ,(x - A,)) + u',(X()) 2! Ce 1 4( x - X. x , S < x.

Integrate again to obtain

u(;- u(xo, >_ C V,..2

Since u is increasing. 2M 2 u(_i) - u(x,) and also the above yields

4A - l(4M "' E.

Thus \%e have shown that \w(x:} < Ce"'4 for some x., x, < x < x + E. This

proves the lemma for Case (i). Other cases are treated similarly.

We next stud, boundary and interior layers.

Lu-MMA 3.6. Use the same notations as in Proposition 3.5.

(i) When u'(x) , .O0, Y, < x < x, then u(x) < 0, x, < x < x , and v, can

be chosen so that either eu"(x) > CrI1/ 4 and u(x) - u(xo) = 0(1) e ' for
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x0 < x < x, or eu"(x) < - C l 1/ 4 for x o  x < x,x 3 can be chosen so that
either x 3 = x1 and f'(u(x3)) < - CIe1/ 4 or x 3 < x, andf'(u(x3)) = -CIE

(ii) When u'(x) < 0, x0 < x < x 1, then u(x) > 0, x0 < x < x 3 , and x2 and

X 3 can be chosen so that x, = x 0 and either x 3 = or x, < xi. In the case

x, < x, we have either Iu(x) - u(x,)I< De 318 for x 3 < x x, or (p(x,)

- Ct 1 / 4 and f(u(x 3 )) - f(u(xI)) > - De 3
1

8 for some D > 0 independent of e.

Proof: (i) The second part is a direct consequence of (i) of Lemma 3.4. It

follows from Lemma 3.3 that u(x 3) < 0. Since u'(x) > 0 and u(x) is close to the
inviscid wave, by Proposition 3.5 we have u(x) < - C, x, < x < x, for some

positive C independent of F. When x2 = x o, (i) holds trivially. If x, > x 0, then

by (i) of Lemma 3.4 we may assume that I (x,) CF1 4 and IT(x)l C '
for x, < x < v._ There are two possibilities:

(I) T(x) > ('1
" F for x 0 < x < x, and (p(x,) = CIE

(II) V(x) :- -(-C' 4 for x < x <x, and T(x,) = -C 1 4
.

In (1). ,''(x) > 0. Since q(x,) = CIe'/ 4 and u(x,) < -C.

c.(x)h(u(x )) C/I f 1

(f(u(x,)) + f'(u(x))<

for sonic (" independent of r. Thus u'(-x) < C' for v,, < x < v,. From Proposi-
tion 3.5. iN'. - 1 xi (= t 1)u- " and so we have

u( .V) - u(V)= fu'(x) dx = O(l)e

Case (Ii) corresponds to the case Fu"(_x) < -Cc'" for v,, < v < x in (i). This
proves (i).

(ii) That x, = v,, follows from (ii) of Lemma 3.4. If v, < v1. then by (ii) of
Lemma 3.4 we may assume that= and iT (x)I> Cc' 4 for
k I ., < .k so long as f'(u( . )) > F',". When q,(.v,) = (,c'I 4 we can show, just

as in (ase I above. that Iu(. \) - u(x,) < De3' for x __< _x s .v,. Consider next
the case (( v, = - ('CIF and qT(x) < -Cic' 1

4 for .v, < x < _v, and f'(u(x))
-. d '. In the case f'(u(.x )) > F1 4 for x,: < x < v, we see by integrating (1.1)
that

IV( l X - lu'{A') f f( u(.V )) f(4(-X,)) + c (v )h (u (.v )dy.
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From qC = and f'( u(x3)) F c1 4 we have

u'(.\J) = _Ci 1 + ,.(x,)h(u(x3 )) = (l)c ''4

J'( ,(x,))

Thus in view of the above estimates and Proposition 3.5 we conclude that

,(u )) -/(,(.i )) = fc(x)h( u( x)) dx - ru'(x,) + eu'(x 3)

> f xh( u ex) d + ru'( .

0(1)I -1 v} + 0( ) 3 4

- 0(l)c: s

This conpletes the proof of Lemma 3.6.

LI MMA 3.7, Suppose that u( x ) is a solution of (1. 1). (1.2) and hasv a minhUim
at ii = k, not near the boundarr v = 0 or v = 1 i.e.. ( F c < -x, < I - Ce , lor
uf fi lenth /arye portice constant C. Then there exists x, x I. x < V,, < x ,.sch

that (-.V ) 1 4. q Cix) 4 - . Ix, - xll < DF >, u(xj) > 0 > I(N 2)

aid f.,( ii(k r ( 0 V J D 3 
' for "ornte posei i' 1 i)fre '/ilwl ),

Proof: Since 0'(.x - 0 for v,, < v < 1. and qW(x1 ) -,(x,,)h(u(x,)) > 0
and U')= IIq (x,,) it follows from (i) of Le;,iaw 3.6 that there exists
.\ -. V, > V,. with q-i v,) (' CI' 4 and u(x) - u(x,)I + Ix, - \:,, = Oil)r" >
Moreover. ul N, ) - C for some positive C independent of F. Similarly. from
i0) of Lemma 3.6. there exists .,\ with x1 

< x, and CI( x ) = -C~r' ". u(.x1 ) > C
and Jx1 - xj = 0(1)el '. It remains to verifv the last estimate in the lemma.
Integrate ).1 from x, to x, to obtain

x.) - u'(0x) -f(u(x,)) - 4(u(X)) - f e(c~ h( ,() u0

Since ch i 011. jx1 - xV, O(1)r
3'/ and

) (x) + c(x)h(u(x))Sf'(u(x))

which is hounded at x = x, x, because Iu( x) > C there, we have

f( u(.i) -C fu(x1 )) = 0(1 )r ± 0(l)(x, - x) 0 O(1)C" ' .

This proves the lemma.
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THEOREM 3.8. Let u(x) = u(x. e) be a solution of (1.1), (1.2). Then for F
sufficientlv small, u( x, E) is close to an inviscid time-asymptotic solution of (2.1)
with the same boundary data u, and u,. More precisely. there exists an inuiscid
solution u( x, 0) with bounday data u, and u, such that

(i) if u(x,0) has a boundary laver (u,, ul) at x = 0, then there exists
0 < x 1 = O(l)F 3&" such that u(xj) - U1 = O(1)e,- 8 and u(x) is monotone over
(0'x1 ):'

(ii) if u(x, 0) has a standing shock wave (u 2, u 3) at x = x0 , then there exist
x. x 3 .0 < x, < x, < 1, such that u(x 2 ) - u21 +Iu(x 3 ) - u3- O(1) 3F ,

1x3 - x'J = O(1)F 3  and u'(x) < 0 for x 2 < x < x3
(iii) if u(x.0) has a boundary layer (u4 , u,) at x = 1. then there exists

.' 4 .l - O(l)c3 '" < x 4 < 1. such that u(x 4 ) - u 4 = O(1)e 3 , 9 and u(x) is mono-
tone over (x. 1).

(iv) outside all possible layers of the types (i)-(iii),

if(u(x))' - c(x)h(u(x)) I O(1)e/4 and Ju(x) - u(xO)! = O(1)El .

Proof: From Proposition 3.5 we see that a monotone solution (u(x) of(l.I).
(1.2) is close to being inviscid except for possible boundary layers. Lemma 3.6
says that the boundary layers almost satisfy the inviscid boundary conditions
(2.4) and (2.5). Consequently. we can find u,, u. ii and ui, with the property that
(u 1 u1) is an admissible inviscid boundary layer at x = 01 ( 1. " 4 ) an inviscid
stationary wave, (44. 4u,) an admissible inviscid boundary layer at x = 1, and

u, - f,+I i4 - u(xI)I + U4 - u(x 4 )1 + u, - i, = 0(1)F3 ', for some x,.x 4
with the prescribed properties in (i). (iii), (iv) of the theorem. We denote by ,(x)
the inviscid time-asymptotic state with boundary values i, and 5,. From the
inviscid theory of Section 2, there are at most three solutions to the inviscid
problem with given end states. Moreover, the inviscid stationary solutions and
the layers depend smoothly on its boundary values. Since Jul - i11 + ju, - i,( =
O(10)-3', we conclude that there exists an inviscid solution (u(x,O) with bound-
ary values u, and u, such that u(x,0) is close to u(x) in the sense of (i)-(iv).

For a nonmonotone solution u(x), it follows from Lemma 3.1 that u(x) has a
unique minimum at x x x. There are two cases: (1) x. is close to x = 0 or
x = 1; (II) Jx)J > Ce 3"'N and Ix, - I > CE' /8 for some large positive constant
C. In the case where x0 is close to x = 0, we have u'(x) < 0 for 0 _< x < xo,
u'(x,) = 0 and so, by integrating (1.1) from 0 to x.

,,'(x, ) - eu'(0) = f(u(x,)) - f(u(O)) + f"'c(x)h(u(x)) dx,

-f(u(x,)) + f(u(0)) < =c(x)h(u(x)) dx = (1)x 0 1
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Thus u(x) has a boundary layer near x = 0 which satisfies the inviscid boundary
condition (2.4) except for a small error O(1)0 / 1. Siniilarly, if x0 is close to 1,
then u(x) has an admissible boundary layer at x = 1. Thus the above arguments
for monotone solutions can be applied to u(x) outside the layers and Case (I) is
treated accordingly. For Case (II) we apply Lemma 3.7 to locate x2 and x3 close
to xo. X, < x < x3, so that u(x) has an interior layer in (x 2, x3). The solution
u(x) is monotone over (0, x 2) and over (x3, 1) and so the above arguments for
monotone solutions apply again. This completes the proof of the theorem.

Remark 3.9. The above theorem does not yield an optimal thickness of the
layers and the distance between viscous and inviscid solutions outside the layers.
Suppose, for instance, that u(x) has a boundary layer at x = 0 and that u, > 0.
From Theorem 3.8, it is a shock layer, u'(x) < 0 for 0 <__ x < xo, u'(xo) =
0, u(xo) < 0 for some x o > 0. Moreover, for e sufficiently small, f(ul) <

f(u(x)). From (1.1) we have

1
u"(x) - -(f'(u(x))u'(x) - c(x)h(u(x))),

-u'(x) =f (u(x)) -f(u(x 0 )) + Xc()h(u(y)) dy, 0 < x <_ x.x o

From the first identity and (1.5), ch < 0, we see that u"(x) > 0 for . < x <
x o, u(i) = 0. Choose x , X < x1 <x 0 , with

f(u(xo)) - f(u(x,)) = f ( (y)) dy,

or

1u(xo) - (x o(I)xo - x11,

for some positive bounded 0(1). Since u'(xo) = 0, we have

If(u(x)) -f(u(x.)) I< rc(y)h(u(y))dy for x, < x <o

and so

eu'(x) = 0(1)(x - x0),

for some bounded and positive 0(1) and x, < x < x0 . Integrate to yield

IU(Xo) - u(X,)I = 0IXo - X11' .

LAN
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Thus we have

0(1) Ix0 - x1, = oO()xo - x1j,

or

IX0 - , 1 = o(1)r, lu(x 0 ) - u(x 1 )I = 0(1)e.

Between 5 and x , we have

[f(u(x)) - f(u(xo))l > f xc(y)h(u(y)) dy,

so

Cu'(x) = o(1)(f(U(x)) -f(U(Xo)), < X < x,.

Integrate it from x to x,:

4o5 f/(u) = 0(1)(x, -

or

O(1)Elogf = 0(1)(x1 -

Thus we conclude that x0 - = 0(0)e loge, a similar estimate holding for
= 0. Thus the thickness of the boundary layer is of the order F log e. The same

holds for other layers as well. Details are omitted.

4. Local Uniqueness and Bifurcation

We want to establish a local uniqueness theorem which, when combined with
the a priori estimates of the last section, determines the exact number of solutions
of (1.1), (1.2). For this we employ the shooting method. Let u(x) = u(x, e, P3) be
a solution of (1.1), with initial slope ft:

(4.1) u(0) = u,, u'(0) = P.

The following crucial lemmas establish the dependence of u(x), x > 0, on the

initial slope /f. Set

du(x)
(4.2) w(x) a#- u
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It follows from differentiating (1.1) and using (4.1) that

(4.3) -K"'- f'(u)w' + mw 0.

"I -MW =_ c(x)h'(u(x)) - f"(u(x))u'(x),

(4.4) A'(O) = 0. h'(O) =1

It is ofte:n convenient to rewrite (4.3) as

(4.5) Ewv" - (f'(u)w-)' + c(x)h'(u)n, = 0.

The first lemma deals with the easy stability case. (1.6).

LEM\MA 4.1. Suppose that c-(x)h'(u) < 0. Then wvx) > 0 for all 0 < x < 1

Proof: Integrate (4.5) repeatedly to yield, for I t V > X, 0

Fit'(x FA) V w'') + f'( u(X)) llx) - 'u v')(X') - fh'vv( T) T

(x w~~x f(u)(0 d l

± 1" )- (0-0x) w( X')jexp~ fJ 1,M d' i-

-fdY fc(T)h(U(.)) (r) ex -jd dT.

Setting -v 0. it follows since, b hypothesis, ch' < 0 that iv(x) > 0 so long as
V' 0 ) > 0 for 0 < v < x. By (4.4) it is clear that vt( v) > 0 for Y close to 0. This
proves, the lemma.

TItHOREM 4.2. Suppose that c( x)h'( a) < 0. Then (1.1), (1.2) have at unique
solution which tends to the corresponding inviscid solution as F - 0.

Proof: Uiniqueness follows from Lemma 4.1 or by the maximum principle.
The existence of solutions is established by the shooting method. We defer this
until later %%hen we deal with the issue for the unstable case in Theorem 4.7.

For the remainder of this section we treat the more interesting and much
harder instabilitv case c-(x)h'(u) > 0. For this we need to look at the boundars
layers and interior layers separately. The first lemma on a single boundary layer
refines the classical result of Coddington and Levinson 121. Throughout, we
assume that t: is small.
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LEMMA 4.3. Suppose that u(.) is a solution of (1.1), (1.2) and has onl a
boundary laver at x = 0. That is. there exists x0 = 0(1 )e such that (2.4) holds with
uo = u(xo) and u'(.x) = 0(1) independent of e for x > x). Then the solution w( x)
of (4.3). (4.4) satisfies w(x) > 0 for I > x > 0 and w'(x) > -Xe 'w(x) for
x > De' / 2 and a constant X - Ce 1' 2. where C and D are positive constants
independent of E.

Proof: We first show that. for some x, = O(1)e'-.

w( x1 ) > ite, w'(x i ) = 0()F'' 2

(4.6)
u'(x) = 0(1). XI _ x .

-he latter estimate follows from the results of the last section. Remark 3.9.
since x, lies outside the layer. Our proof for (4.6) is carried out along the same
line as similar arguments in Coddington-Levinson 121, except for some refinement
due to the boundary laver. We note that in [21 the authors dealt with onl% the
subsonic case and we need to treat the transonic case. Integrate (4.5) from 0 to -
to ,ield

(4.7), Fi''( -) "(u)w( = ) - )f((T)h'(u() )w( )dT.

Another integration results in an expression for w(. ):

(4.7), it( L " ( A . )( r )) ( r j s .

where

i k..) =exp(Tf)(T

I.et O )O1 h he such that /"( u(x) __-)) - k < 0 for , < 1. for some
k ) 0 and N maxJf'(u(xf {  (.v 0 < }. Set x 4 , j,' +-  ' here I.
I .011 )A . Then, for0 - s < .,

S exp (, x) < exp{MO( I}

x-(, ) _ cxp: --
X. e -- ) < exp{ -klI

/L(\,) . exp(( -kl + NO(1))e' 2} exp(-/r 1 -



50 S.-B. HSU AND T.-P. LIU

Thus, for x > x 1,

f(xE(x, s) ds = i E(x, s) ds + f E(x, s) ds

exp{ -kE- 1 2} ds + fXexp{ - kx- s)} ds
0E

2.E

Similarly, the second term in the right-hand side of (4.7)2 can be written as the

sum of 1, and 12, where

I,1= - j- E~~'u,)~'['~,s s+f,(x, s) dsjdr,

12 - - f c(r)h'(u(r))w(r)f E(x,s) dsdr.

!L- p W. j (S) ll[exp k -k 1/24} + fi dr 5 2n k jI w(s) ds.

1121< 2 f w(s)Ids, where ic(x)h(u(x))l n. 0 _x _ 1.

Combining these estimates we obtain

+ Ln

and this in turn implies

1w(x)l 2exp(- k

and

INI + 1121 -:1 2 (exp { - 1) < -- exp 2 .

Thus

w(x) = fE(x, s) ds + xO(E).

.. . ... II I I I II I I II II . .. .. .. ..
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As in [2]. we may show that by taking care of the boundary layer.

w(x) = - E'(uIx - E(x, )]- O(E2) XO(E)
-f'(ux))f'u(x)) -f'(u(x))

for x x1 , and by (4.7), we have

jW'(X'~ + 0 (E) +XO (1) + Fexp(~ - 1)1.

or

W'(X) =0(X + E) for x ! x,.

This proves (4.6).
Let X he a small positive constant to be determined later and set

Kw(x) =-v(x)exp( A

We have

Vtw')(x) + v'(x)exp{-X-x

From (4.6) we have

cux,) > 0, t'(x1 ) > 0.

provided that X 2! CE' '2 for some large C. By (4.3) and the above it follows that

Ell" + (-f'(u) + 2A) C

(4.8) + X 2 _ f'(U) +f"(u) U'+ c(x)h'(u)]r,= 0.

In view of (4.7) we know that

If"(u)u' + c(x)h'(u)jI = 0(1),

for x, =- x 5 1. By Theorem 3.8, outside the layer, x > x,. u(x) is close to the
inviscid stationary solution which is subsonic, f'( u( x)) < 0. Thus we can choose
X small such that the bracket in (4.8) is positive. One such choice is X = CE' 2 for

some large C. Thus the lemma is proved by the maximum principle.

LEMMA 4.4. Suppose that u(x) is a solution of (1.1). (1.2) and has only one
boundary layer at x = 0 or x = 1, but not both, and has no interior layer. Then the
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solotion ii) o (4.3) nit/ elther (0) = 0, w'(0) = I or w(l) = 0. w'(1) 1

iait.', i ther XFI) U tt'( ) A - w(l) or w(()) < 0. "'(0) < Ar 'w(0) for

Proof: Suppose that wt(0) = 0, w '(0) 1. The lemma is reduced to the
prc[Ou, onle if the houndary laver is located at x = 0. Suppose that the
houndar\ la\er is located at V 1. Then bv the same argument as in the last
proof %,c can sho\\ that the solution ii(x ) of (4.3) with w(i1) 0. w'(11) 1
• tisies i0) < ). Since the Wronskian wis. )iw'(x) - ;x()w'(x) does not change
sk1gn and i', poitive at N n o, we see that w( 1) > 0. Other parts of the lemma are
prot cd siimilarl\.

i MM.\ 4.5. ,Suppo " thar U N ) is a solution of (1 1). (1.2) with onh tin inte'ior

hoer. dial 1, . tlure \.tS A,, an d x". o < V, < x" < I. .uch thna u'( x) = O( I
h'jcict/thit of Jew " - i (x,,.-\'). .x' - -1, = 0(1 )U. J( u( k:\ ))= .(u i ,,)) +

Of I ) . lit , ) t ( "). Then the sohaion w( .\ ) of (4.3). (4.4) satisfies ( ) >

/,r x - t . ) j1. ix i o) > 0 .hOr x > x, for some x, not in the mtn'rior a ic'r.
k k it1/ 1 k i,, 0 ) ),r log tj. .Moreoier. '(.\-) < 0. and (1or som e (on-

itanti (. -) 0 < , 'it .(x) or x > -x1 + J3W 2 and X = (r

Proof : I'l, proof consists of three steps investigating the behavior of .(x
before the lax\er. in the laver, and after the layer.

S., l, , et A he a positive constant to be determined later and set

(4.L) w( ) ui'rV)exp t F-I,

We has e from (4.3). 4.4) that

X .-+ (x)expI

(4.111 -c' + (2X- f'(u))I'+ - +'(u) .± mI r O.

I(o0 = O. ('(0) 1.

From fheorcm 3.5 \,e know that u(x) is close to a supersonic inviscid stationary
,Aase for 1) < < %, Thus we may choose a small X such that ( 2 -

0 u( ))A )i 1 for 0 < x < x., Since rn(x) is bounded over 0 < x o x,.

M'U) + m < -1, 0 _< x X,).

Thus. by the maximum principle, applied to (4.11). (4.9)-(4.11) imply that
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(x) ">0.c'(.,) > 0 and

w' > - Vw for 0 < x < x:o

This and (4.3) yield

Fvt" = 1(u) "- "IVA > 2u w+ }f u)w'.

and so. for small t.

rw" > -f,(u)w' for 0 < x V X,.

This and the initial data (4.4) for w yield

w'(x)> exp Kx "

(4.12)

V ) > exp K X - i), 0 <x _<A,.

for some K, > 0.

Step 2. Define x* by u(.x*) = 0. xo < x* < x . Integrate (4.5) from 0 to x*,
to obtain

Evil X*) = fcX. tx)h'(u(x))w(x) dx.

Since x* is within the layer we have from Lemma 4.4 that w(x) > 0 for
0 < x < x*. Moreover, we have the estimate (4.12). Thus the above yields
w'(x*) < 0 and we conclude that

w'( )=0 for some iX, <  < x*.
(4.13)

w'(x)<0 for i <xsx*.

Step 3. We want to show that there exists x, > .,, Ix - j small, such that
w( x,) 0. For the moment we assume that

(4.14) w(x) >0 for 0<x<x ,

for some x, > i. We have either x, = I or x, < I and w(x,) = 0. From Lemma
4.4 we know that x, does not lie in the interior layer. Integrate (4.5) from i to
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x, i < x < x, then

,,-'(x) = f'(u(x))w(x) -. f'(u(.0))w(.)

(4.15) - f4 c(y)h'(u(y))w(y) dy.

From (4.14), (4.15) and u(.) > 0 we obtain

(4.16) ew'(.) <f'(u(x))w(x) for i < x < x,.

Then (4.13), (4.16) yield

(4.17) w'(x) < 0 for ,i <x < x,.

Let i = . + Dr' for some large positive constant D. Then 5 is outside the
layer and V > . where i. is characterized by u'(i) = 0. Suppose (4.14) holds for
X, > i + DE4log El for some large positive constant D, Integrate (4.3) from ,i
to x:

w,'(x)E(x) =w'() - 7jm(s)E(s)w(s) ds,

(4.18) E(x) = exp{ I ff'(u(v)) dv}.

e(x) = c(x)h'(u(x)) - f"(u(x))u'(x).

Divide (4.18) by E(x) and integrate to obtain

w(x) = w(.) + w'( )f E(y)-dy

(4.19)

-JE(y)Y' dyf Vm(s)E(s)w(s) ds.

From (4.14), (4.15), (4.17) we obtain

w' (.i ) < V((M'(,,(0))- o(1)( -) .

Thus (4.19) and the above yield

W~x 1 + MU )-OW- ^)JxE(y)yI

(4.20)

-1xE(y)IdyfYm(s)E(s)w(s) ds,
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for i x < X. Integrate (4.16) to obtain

w(s) < w()exp{f(u()) d, for 5 <s _< x'.

Since m(s) is bounded, the above estimate yields

jm(s)E(s)w(s)I z Cw(i) for 2 x _x ,

for some C independent of e. This and (4.20) imply

w(x) < W(j ) + f(u())- O()( - E(y) 1dy

(4.21)

+ 001) JE(y)-'(y -i) dyv

Take x = x + 2E1log eI in (4.21). Then we obtain

-(x) < w(1 I f(u(X))fE(y) 1dv+ !(fE(y,-dv)

(4.22) x (0(1)2eIlog eI - 0(1) f/']

< W(2)[1+ U(O)) E(.)-'dy

for e > 0 sufficiently small. It remains to show that the above bracket is negative
and thus contradicts (4.14). For this we expand E(y) - ' by Taylor expansion,
taking note of the fact that u'(.) = 0, 1 is in the interior layer, and . > i is
outside the layer,

(4.23) f'(u(x)) = f'(U()) + (X - i)u'(Q)f"(U()), < < x.

Since I.T(x)I< C'e1/ 4 for x > x0,

,(X) = -C(x)h(u(x)) - qr(X)
-/'(u(x)) c,

for some positive C2 and x > . Thus we have from (4.23) and (1.3), f" > 0, that

f'(u(x)) > '(U()) + C(x - ), < x<,
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for some C independent of r. Consequently,

(4.24) exp f'(u(.i)) x C(x - dx

cxp- I 2 j"(u(x)l(.v - .)kexp'( C (. - ) <

let Vf 0'(u( )) Then

',I,,> M eP -M -(y- .).exp, x(--)2 dv

- .f xp ---

exp -. + d: > '.

Thus the bracket in (4.22) is negative.
To tini h the proof wke observe from (4.15) and w(.A-) 0 that it '(x,) - 0.

Since v, is on the right side of the interior layer. we may apply Lemma 4.3 to
- ( ),' '( k) to sho% that w(.) < 0 for x > x ,

LI.MMA 4.6. .uppo.se that u(x ) is a ,soution of (1.1) which either ha.S an

interior later not located within 0(1 )F oj _v = 0 or .x = 1, or has no interior laver.

In the l' riner cave. the corresponding solution w( .x ) of (4.3). (4.4) has it( propertv
that w( I ) < 0. and in the latter case. w( 1) > 0.

Proof: Using lemmas 4.3 -4.5 and Theorem 3.8, it remains to treat the case
where u(. x) has either an interior layer and a rarefaction layer at x I. ef. (ii) of
Case El in Section 2, or a boundary layer at x = 0 and a rarefaction laver at
i -- 1. f. (iii) of Case El and Case DI in Section 2. In all these cases the solution
is subsonic before the rarefaction layer, which connects the sonic state zero to the
positis e state u, around x = 1. We treat the case without interior layer; the one
with the interior laver is similar. From Lemma 4.3 we have, before the rarefaction
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laver.

w(x) > 0. w(x 2 ) > w(x,)exp( - -7(x ) .>x I,

(4.25) w'(x) > -XE 'w(x),

X Cc1 2 for x, x, x2 in I,-m),

for some positive constant C and x, xl- x 2 outside the layers, 0 < 8 < '. By
Theorem 3.8, at .x. the solution u(x) is close to the inviscid stationary solution
v( x). which is sonic at .x = 1. The equation (2.2) which (x) satisfies is singular
at sonic. Thus r'(x) is large for x close to 1. Consequently we may choose
\:,. = I - 26. so that, for 8 small, u'(x 0 ) is large and thus

(4.26) m(v) = c(x)h'(u(x)) - fI(u(x)Iu'(x) < -ni,. V, < x < 1.

for some positi e constant pi independent of -. For any given 8 > 0 we have

(4.27) ['u(x )) < - '" CI < Y < 1 -8

for some ( 0 depending only on 6. Integrate (4.3) to get

k(, , )f (x) 1 1'(11} ± 0 ( )d

(4.2 )

I)x expr -

Froin 14.27) %\c hase

E expL--- < I

Ihis. (4.25) and (4.26) 5ield

I4 f ( , ) ) E ( )w ) d . s t

In Es i ( (b -xp r I

e l } xp! ' "
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Since C1 and 8 are positive constants independent of e and X = Cel"2, the above
estimate yields, for small e,

f1 m((s))E(s)w(s) ds >> -

X,3

This. (4.25) and (4.28) imply

,'(l - 8)E(1 - 8) > -X,--'w(x) + 1-1 (-m(s))E(s)w(s) ds > 0.
xo

v Thus we have

(4.29) w'(x)>0 for x=1-8.

This and (4.25), w(x) > 0 for x = I - 8, implies that w'(x) > 0 for I - 8 < x
< 1. Indeed, from (4.3) if w'(,) = 0 for some Z ,1 - 8 < i < I and w() > 0,
then

ew"( = -m(w( ,

which is positive by (4.26), a contradiction. Thus w'(x) > 0 for I - 8 < x < I.
In particular, w(l) > w(l - 8) > 0. This proves the lemma.

THEOREM 4.7. Suppose that c(x)h'(u) > 0. Then, for sufficienth- small E.
(1.1). (1.2) have one or three solutions which tend to the correspondinl iin'iscid
solutions as e -- 0_. Moreover, (1.1), (1.2) have three solutions for small F in Case
El and (iii) of Case E3 (in Section 2 for inviscid classification), and in other cases
there exists only one solution.

Proof: That there exist at most one or three solutions in each respective case
follows from the a priori estimate in Section 3 in linking the solutions to inviscid
solutions and the local uniqueness theorem as a consequence of Lemmas 4.4-4.6.
It remains to show the existence of a solution which is close to any given inviscid
solution. This is done by the shooting method. We shall carry out the analysis for
the case where there is a shock layer at x = 0 and a rarefaction laver at x = 1:
other cases can be treated by similar arguments. For simplicity, we assume that
ii, > u1 > 0 and u, > 0. The inviscid solution consists of a shock layer (u,. u.) at
x = 0, an inviscid stationary solution (u*.0) satisfying f(u), = c(x)h(u) and a
rarefaction layer (0. u,) at x = 1. We want to find a value a = a0 so that the
solution u(x, a) of (1.1), with

u(0, a) = u, u'(0, a) = a.

satisfies u(l, a() u,. For jai >> l,a < 0, i.e., f'(u,)a - c(0)h(uj) -C 
,
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we have from (ii) of Lemma 3.4, that u(x, a) has a boundary layer at x = 0.
From (1.1), u" > 0 so long as u < 0 and u' < 0. Thus u'(xo, a) = 0 for some

x 0 > 0. By Remark 3.9 on the thickness of boundary layer, we have x, = O(1)e.

Integrate (1.1) over 0 < x < x0 to get

-ra =f(u(xo, a)) - f(u,) - jo°(x)h(u(x, a)) dx,

or

f(u(x., a)) + O(1)emax(h(u): u(x o ,a) < u < u,} = ElaI + f(u,).

Thus from (2.7) we see that, as a --* - , u(x 0 , a) c - . For the boundary
layer to exist at x = 0 it is sufficient to have f'(u,)a < c(O)h(u,) - CIE1/4. For
a = a, satisfying f'(u,)a, = c(O)h(u1 ) - CIe1/ 4 the above identity yields

f (u(x 0 . a,)) = f (U') - ea, + O(1)E

=f(u,) - E(f'(u1 ))- 1 (c(o)h(u,) - CEI
14

) + o(1)E

=/(ul) + O()r.

Thus, as E - 0, u(x,. a,) - ii, > u,, and so for small e, u(x ,. a,) > u.. Since
u(x, a) is close to being inviscid for x > x0 so long as u(x, a) is not close to the

sonic state zero. (i) of Lemma 3.4. it follows that, for small e, u(x, a) stays
subsonic for u(x o, a) < u, and becomes sonic at x = x(a) < 1 for u(x o, a) >
u.. The latter holds for a = a. Moreover, once u(x(a), a) 0 for x(a) < 1,
which is the case for a = a1, u(x, a) has a boundary layer at x = 1, Theorem 3.3,

and is strictly increasing for x0 < x < 1. Moreover, from Lemma 3.5, if I - x(a)
> O(1)e1 / 2 . then u(x, a) becomes + o before reaching x = 1. Since u(1, a) is a
strictly increasing function of a for a < a1, Lemma 4.3, and u(I, a,)=
x. u(l, a) -- - as a -- - o, we see that there exists an a0 < a, with u(l. a o )

= u,. Moreover, since a0 < a,, u(x, ao) has a shock layer at x = 0. By Theorem
3.8, u(x, ao) also has a rarefaction layer x = 1. We have thus constructed the
designated solution of (1.1). The proof of the theorem is complete.

5. Asymptotic Stability and Instability

In this section, we study nonlinear stability and instability of stationary
solutions of

u, + f(u), = Eu, + c(x)h(u),

(5.1)
u(O' t= u, u(l. t) = Ur, u(x,0) = up(x), 0 x < 1.
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Let U(x) = U(x. E) be a stationary solution,

f (L),= eU,, + c(x)h(U).
(5.2)

u(0) U1,. U(l) = U,.

Set w(x., ) = u(x. t) - U(x). From (5.1), (5.2) we have

w, -+S'(w + Li)(w, + U,)= ew, + f'(U)U, - c(x)h(U) + c(x)h(w + Ui).

(5.3) w(0. 1) 0, w(1. t) = 0.

The linearized equation is

+ f'(U w, +f"(U))Uw ew, + c(x)h'(L)w.

w(0, t) 0. w(l. t) =0.

We shall use spectral analysis. Set w(x, t) = etq(x) and obtain from (5.4)

.q" - (f'(L)q)' + c(x)h'(U)q = Xq.

q(0) = 0, q(1) = 0.

THtqoRi-M 5.1. Suppose (1.6) holds, c(x)h'(u) < 0, then everT steady state
U(x) of (5.1) is asrniptoticall stable. When (1.7) holds. c( x)h'(u) > 0, then

steady states containing no interior laYer are asymptotically stable: those containing
interior /aver are a.vtmplotical/ unstahle.

Proof: A steady state U(x) is stable if the largest eigenvalue A is negative.
From linear Sturm-Liouville theory (see [11) the eigenfunction q(x) correspond-
ing to the largest eigenvalue X is of one sign. We may therefore assume that

(5.6) q(k) >0. 0< x < 1, q'(0) = 1. q'(1) <0.

When c(x )h'(u) < 0, we have, integrating (5.5). that

(5.7) r( q'( 1) - q'(O)) + fi( )h'( U(x ))q( x ) dx =Xfq(x) d.

From (5.6) and (5.7) it is clear that X < 0 and so U(x) is stable.
When e(-x )h'(u) > 0. we have two cases: (i) U(x) contains no interior layer.

(ii) U( .) contains an interior layer. In case (i), for X = X(r) is bounded
uniformly in F, then we may rewrite (5.5) as

Fq" - (f'(U)q)' + (c(x)h'(U) - X)q = 0,
q(O) = 0, q'(O) = 1.
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which is of the same form as (4.5). Thus it follows from Lemmas 3.3 and 3.4 that
q( 1 ) > 0, which contradicts (5.5), q(1) = 0. fn case (i) if X X (E) becomes large
X >> 1. then it follows from integrating (5.5) that

(q(xY)E(x))' = E(x) - E(x)f x(c(x)h'(U) X)q( T) dT.

E(x) =_expl _ f'(U() U"'\
SE fo

whence (b ch'(U) X < 0 as X >> 1) we have

q(x) > I fjE(,r) d r.

In particular, q(1) > 0. again a contradiction. Thus, in (i). X < 0 and U(x) is
stable.

Finally we consider the case where c-(x)h'(u) > 0 and U(x) contains an
interior laver. We want to prove by contradiction that X > 0. If not, then

c (x )h'( U ) - X > 0

and so from adapting the proof of Lemma 4.5 to (5.8) we have q(l) < 0 which
contradicts (5.5). q(]) 0. Thus A > 0 and L'(x) is unstable. This proves the
theorem.
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